2009 18th International Conference on Parallel Architectures and Compilation Techniques

Flextream: Adaptive Compilation of Streaming Applications
for Heterogeneous Architectures

Amir H. Hormati*, Yoonseo Choi', Manjunath Kudlur?,
Rodric Rabbah?®, Trevor Mudge!, and Scott Mahlke!

I Advanced Computer Architecture Laboratory
University of Michigan - Ann Arbor, MI
{hormati, yoonseo, tnm, mahlke} @umich.edu

ABSTRACT

Increasing demand for performance and efficiency has driven the
computer industry toward multicore systems. These systems have
become the industry standard in almost all segments of the com-
puter market from high-end servers to handheld devices. In order
to efficiently use these systems, an extensive amount of research and
industry support has been devoted to developing explicitly parallel
programming paradigms, such as streaming models, and new com-
piler techniques.

One important challenge that arises in multicore systems is the
ability to dynamically adapt a running application to a target archi-
tecture in the face of changes in resource availability (e.g., number
of cores, available memory or bandwidth). In this paper, we focus
on the increasingly important area of streaming computing and in-
troduce Flextream as a flexible compilation framework that can dy-
namically adapt applications to the changing characteristics of the
underlying architecture. We believe this is an important contribu-
tion as software developers grapple with the details of parallelism
in a rapidly changing architecture landscape. Flextream achieves
its goals through a combination of static compilation and dynamic
adaptation techniques. Our results indicate that Flextream’s ap-
proach can achieve high-performance resource allocations that are
within an average of 9% of the optimal solution with low overhead
for a wide range of streaming applications.

1. INTRODUCTION

Many-core processors provide a lot of flexibility in that they can
potentially speed up the execution of individual applications (be-
cause of increased parallelism), while also having the ability to run
many applications at the same time. As the number of applications
that can effectively use multiple cores increases, it will become nec-
essary to develop strategies that can adequately manage the alloca-
tion of resources between applications. Resource allocation is a chal-
lenging problem because application behavior (and hence resource
requirements) can often vary in unpredictable ways, depending on
factors that include dynamic workloads and variability in end-user
scenarios. The issue is made more challenging by the numerous het-
erogeneous architectural resources that are already exposed to soft-
ware (e.g., the compiler). We believe that managing the allocation
of resources effectively requires many non-trivial tradeoffs, and we
introduce Flextream as a means to address this issue.

Specifically, we address the issue of provisioning an individual
application to run on a heterogeneous architecture under varying
configurations of resource allotments. In doing so, applications are
able to efficiently and effectively adapt, at runtime, to changes in
the number and kind of resources at their disposal. For example,
consider a mobile device that serves as a multimedia player and an
internet browser. If the user is running only one of the two applica-
tions, then that application can potentially exploit all of the available
resources in the device. However, as soon as the user also starts
browsing the web, the resources available for the media player must
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change to accommodate the new application. If either of the appli-
cations is not properly provisioned to run on a varying number of
resources, the end-user experience will almost surely be a poor one.

Static compilation approaches, in general, can generate high-qu-
ality resource allocations offline. However, such solutions are of-
ten sensitive to runtime variations in resource availability. In other
words, any change in the underlying architecture’s parameters, such
as available on-chip memory or the number of cores, will result in an
inefficient execution of a statically scheduled application in the best
case, or code that can not execute in the worst case.

One potential solution to this problem is to compile alternative
versions of an application, and to dynamically switch between ver-
sions according to the resources that are available in the architecture.
For example, the media application running on an 8-core device can
be provisioned to run on either 1, 2, 4, or 8 cores. The obvious
deficiencies of this approach are three fold. First, this strategy can
lead to large amounts of code bloat. Second, it may be impractical
to statically consider a high number of architectural configurations.
Lastly, the application may have to execute an inefficient fail-safe
implementation (e.g., sequential) if the runtime scenario yields a set
of resources that was not statically considered.

An alternative solution is dynamic compilation, where the appli-
cation is repeatedly compiled at runtime when resources change—
this can arise if the number of available cores, or the amount of mem-
ory that is available, or the available bandwidth varies. This is a
promising approach because it can continuously adapt to changes in
resource availability, if only the costs of compilation and adaptation
can be made low enough to be practical. In order to keep the costs
of compilation down, the runtime compiler is likely to be limited to
a small set of optimizations. Furthermore, if we consider all of the
resource ingredients that can vary at runtime, it will be quite chal-
lenging to engineer an efficient solution that addresses all of them
well.

In this work, we propose a compilation and runtime adaptation
system called Flextream. It is aimed at addressing the challenges
described above in the context of streaming applications. Stream-
ing is an increasingly important programming paradigm because it
addresses the parallel programming challenges among several ap-
plication domains and tiers of the computing industry (from mobile
computing to high-end server farms).

In Flextream, a streaming application is represented as a graph,
where the nodes encapsulate computation, and the edges between
nodes describe dataflow. A stream program (graph) is mapped to a
many-core heterogeneous architecture by assigning nodes to cores,
and dataflow to communication channels between cores (e.g., DMA
transfers between cores, or between main and local memories). The
main innovation in Flextream is an adaptive stream graph modulo
scheduling algorithm that combines the benefits of static scheduling
with the advantages of dynamic adaptation. This strategy, of using
an adaptive hybrid (static-dynamic) compilation approach, can lead
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to significantly better resource utilization, and can help deliver the
promise of many-cores to end-users.

Flextream consists of two main components. The first part per-
forms static compilation of an application to a virtualized multicore
system using heuristics for controlling the amount of parallelism in
the graph, and an integer linear programming (ILP) formulation to
find the optimal mapping of nodes to resources (i.e., work partition-
ing). The second part consists of a light-weight online (dynamic)
adaptation system that modifies the active schedule based on the
available resources in the architecture. Dynamic adaptation con-
sists of several phases including finding a new processor assignment,
stage assignment, and buffer allocation. The online phases are de-
signed to be light-weight and yet produce efficient results.

In this paper, we mainly focus on heterogeneous systems with
distributed memory similar to the IBM Cell [9] processor. Using the
proposed framework, an application is statically compiled for a con-
figuration of the architecture with the greatest number of resources
which may include processing elements, on-chip storage and band-
width. This results in high-quality solutions for a specific configu-
ration. The dynamic light-weight layer uses the result of the static
compilation as a hint to quickly discover an efficient solution for the
new system configuration. Our experiments show that assisting the
online adaptation phase with a static solution reduces runtime over-
head and greatly improves the quality of the solutions that the online
phase discovers. Our approach eschews the need for recompilation
when resources change, and thus enables software developers to pro-
duce adaptive and high-quality streaming applications. The online
adaptation phase uses a technique similar to [18] (called Multicore
Streaming Layer or MSL) to stop the current schedule and distribute
the new schedule between the processors. More details about this
technique are mentioned in Section 2.2.

This paper makes the following contributions:

o An efficient framework for adaptive compilation of streaming
applications to heterogeneous multicore systems is proposed.

e A parallelism-tuning heuristic coupled with a scalable work
partitioning based on ILP formulation is proposed to find a
static software pipelined scheduling for streaming applications.

e Highly efficient dynamic work redistribution and buffer allo-
cation algorithms are introduced to adapt the software pipelined
schedule dynamically to efficiently exploit the capabilities of
the target platform.

The rest of the paper is organized as follows. In Section 2, the
target architecture, input language, and multicore streaming layer
are discussed. Then, the static compilation and online adaptation
layer of Flextream are discussed in Section 3. Finally, in Section 4,
the framework is evaluated. Section 5 discusses some of the related
works that motivated this system.

2. BACKGROUND
2.1 Architecture

The compilation target in this paper is a streaming memory mul-
ticore architecture where on-chip memory structures are addressed
as local memory and are explicitly managed. Such architecture pro-
vides the compiler with a great deal of flexibility in terms of orches-
trating code and data locality, and managing communication granu-
larity, frequency, and latency.

The target system is similar to the Cell processor in terms of the
high-level architecture. It consists of a more powerful master proces-
sor and several slave processing elements. The master processor is
similar to the PowerPC core in the Cell processor running at 2GHZ
with 32KB L1 and 1MB L2 cache. Each slave core contains a local
memory for instruction and data, called local store, and a memory
flow control (MFC) unit which can perform DMA operations to and

215

Slave Slave Slave

Lacal Store Local Store o o o Lacal Store

DMA DMA DMA
1 I 1
Master 1
Interconnect
Processor |
1 1 1
DMA DMA DMA
Local Store Local Store PRI, Local Store

Memory

Slave Slave Slave

Figure 1: General architecture template

from the local stores independent of the cores. The slave cores can
only access the local store, so any sharing of data has to be per-
formed through explicit DMA operations. The ability to perform
asynchronous DMA operations allows overlap of computation and
communication, and is leveraged for efficient software pipelining of
stream graphs. The multicore system used during static compilation
(Section 3.1) is similar to the processor in Figure 1 and has 32 slave
cores. The actual physical processor used during online adaptation
(Section 3.2) also has the same architectural template but the number
of slave cores varies in each experiment from 2 to 32.

2.2 Multicore Streaming Layer

‘We use the runtime system introduced in [18] to dynamically man-
age resource allocations. The runtime system, called the multicore
streaming layer (MSL), supports loading and unloading of computa-
tion (e.g., streaming actors) on different cores, allocating local and
global buffers, and managing DMA transfers for orchestrating com-
munication. The MSL also consists of a set of commands that the
online adaptation system can use to migrate from one schedule to an-
other by moving computation between cores, allocating new buffers
in different regions of local or global memory, and so on.

In our implementation of the MSL, the master processor generates
the commands that are necessary for adapting an extant schedule.
These commands are sent to the slave processors through memory
mapped registers called mailboxes. Each slave processor runs a very
light-weight manager that is able to receive the commands from its
input mailbox, decode the instructions, and act on them. Based on
the commands, the slave processors can allocate buffers in their local
stores, setup DMA transfers and run code for a desired duration. The
overhead of delivering the commands varies according to the size of
the command and the latency of mailbox transfers. The results that
are presented in latter parts of this paper show that we achieve a very
low overhead when adapting to resource changes. This paper does
not detail the design of the command system. The interested reader
is referred to [18] and [10].

2.3 Stream Programming Model

Flextream is best suited for applications with an abundance of
parallelism that is amenable for static scheduling. Thus, we focus
on stream programming models that are based on synchronous data
flow (SDF) models [14]. In SDF, computation is performed by ac-
tors, which are autonomous and isolated computational units. Actors
communicate through dataflow channels, often realized as FIFOs.
SDF and its many variations expose the input and output processing
rates of actors, and in turn this affords many optimization opportuni-
ties that can lead to very efficient schedules (e.g., allocation of actors
to cores, and FIFOs to local stores and DMAs).

We distinguish between stateful and stateless actors. A stateful
actor modifies its local state and maintains a persistent history of its
execution. For our purposes, we assume that all computation that
is performed in an actor is largely embodied in a work method.
The work method run repeatedly as long as the actor has data to
consume on its input port. The amount of data that the work method
consumes is called the pop rate. Similarly, the amount of data each
work invocation produces is called the push rate. Some streaming
languages (e.g., Streamlt [16]) provide a non-destructive read which
does not alter the state of the input channel. The amount of data that



is read in this manner is capture by the peek rate. Unlike a stateful
actor, which restricts opportunities for parallelism, a stateless actor
is data-parallel in that every invocation of the work method does not
depend on or mutate the actor state. The semantics of stateless actors
thus allow us to replicate a stateless actor. This opportunity is quite
fruitful in scaling the amount of parallelism that an application can
exploit, as past work has shown [5, 6].

We use the Streamlt programming language to implement stream-
ing programs. Streamlt is an architecture-independent streaming
language based on SDF. The language allows a programmer to al-
gorithmically describe the computational graph. In Streamlt, ac-
tors are known as filters. Filters can be organized hierarchically
into pipelines (i.e., sequential composition), split-joins (i.e., parallel
composition), and feedback loops (i.e., cyclic composition). StreamlIt
is a convenient language for describing streaming algorithms, and its
accompanying static compilation technology makes it suitable for
our work.

3. COMPILER FRAMEWORK

This section describes our method for scheduling a stream graph
onto a heterogeneous streaming multicore system. The objective is
to obtain a maximal throughput adaptive modulo schedule of the

stream graph, taking computation/communication overheads and mem-

ory requirements into account. The structure of the Flextream com-
pilation framework is shown in Figure 2. The compilation is divided
into two separate phases, static compilation and online(dynamic)
adaptation. In the next two sections, the details of the static and
online phases are discussed.

Streaming
Application

Prepass Replication

ouvis

Work Partitioning
Partition Refinement

Stage Assignment
Buffer Allocation

Figure 2: General flow of the Flextream framework
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Before talking about details of the compilation steps, it is im-
portant to understand how an application compiled by Flextream
behaves at runtime in the face of dynamic resource changes. Fig-
ure 3 shows an example runtime scenario. At each point during
the execution, only one schedule is active. Execution starts with
schedulel. If some of the currently-used resources become unavail-
able or new resources become free, an online reschedule becomes
necessary. The new schedule is marked by schedule2 in the figure.
The process of migrating from schedulel to schedule2 consists of
three main parts. First, the online adaptation phase has to generate
the new schedule and the necessary MSL commands using the so-
lution found by static phase. Second, the current schedule has to
be stopped(drained). The latency of this case is directly related to
the number of stages in the module schedule and the work of the
maximally loaded processor. Third, the generated commands have
to be sent to the active processors. In the experiments section, the
overhead of each of these phases and also the performance of a full
runtime scenario are discussed.
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Figure 3: Overall execution flow at runtime in the case of resource changes.

3.1 Static Compilation

The static phase’s goal is to find an optimal schedule for a virtu-
alized member of a family of streaming multicore processors while
considering bandwidth, storage and the processing capabilities of the
system. This phase consists of two major sub-phases shown in Fig-
ure 2. First, a prepass replication is performed on the stream graph to
adjust the amount of parallelism for the target system by replicating
actors. Second, an ILP formulation is used to optimally partition the
work between the slave cores of the target system. The virtualized
system used in this phase is generally the most powerful processor
of a streaming multicore family. For example, if a streaming appli-
cation should be compiled for the IBM cell processor family with 4,
8, or 16 processors with local store size of 128KB or 256KB, the 16
processor version with 256KB is chosen as the virtualized system.
Selecting the virtualized system in this manner, increases the free-
dom of the next phases to find a high quality schedule in case the
program is ported to another configuration with a more limited set
of resources or the availability of the resources changes at runtime.

Compared to [12], Flextream’s static phase takes a different ap-
proach toward static modulo scheduling. The static phase consists of
a separate step to perform replication instead of integrating it with
the ILP formulation. This greatly improves the scalability of the ILP
formulation and enables the inclusion of other crucial constraints
about memory allocation and data transfer overheads. Ignoring these
factors can have a significant negative impact on the runtime perfor-
mance in systems with low-bandwidth interconnects.

3.1.1 Prepass Replication

Figure 4 shows the theoretical speedup possible for a set of un-
modified stream programs for 2 to 64 processors. The actors present
in the programmer-conceived stream graph are assigned to proces-
sors in an optimal fashion such that the maximal load (work) on any
processor is minimized. Speedup is calculated by dividing the single
processor runtime by the load on the maximally loaded processor.
The programmer-conceived stream graph has ample parallelism that
can be exploited on up to 8 processors. Beyond 8 processors, the
speedup begins to level off.
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Figure 4: Theoretical speedup in the absence of replication.

Most benchmarks just do not have enough actors to span all pro-
cessors. For example, £ft has only 17 actors in its stream graph,
therefore no speedup is possible beyond 17 processors. Another rea-
son for the speedup limitation is that work is not evenly distributed
across the actors. Even though the computation has been split into



multiple actors, the programmer has no accurate idea how long an
actor’s work function will take to execute on a processor when cod-
ing the function. This leads to less scaling on 16 or more processors.
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Figure 5: This figure shows an example stream graph and how replication is
performed. Part (a) shows the original graph and the version after replication.
In part (b), the partitions before and after replication are shown.

Most of the stream benchmarks are completely stateless, i.e., all
actors are data parallel [6]. In fact, only mpeg2 has actors that are
stateful. Data parallel actors can be replicated any number of times
without changing the meaning of the program. Replicating data par-
allel actors not only allows work to span more processors, it also
allows work to be evenly distributed across processors by making
the largest indivisible unit of work smaller.

To provide the next phases of the compilation flow with ample
opportunity to efficiently utilize the target system’s capabilities, a
prepass replication is performed on the stream graph. Algorithm 1
shows the general steps of this phase. The main task is to heuristi-
cally replicate larger actors based on an estimate of the optimal work
partitioning of the current graph. Maximally replicating the larger
actors may not always result in the best solution for the next phase.
Excessive replication of actors is always discouraged, because that
increases split/join overhead and overall code size. Therefore, graph
partitioning on the original stream graph is used to estimate the so-
lution of the work partitioning phase. The number of requested par-
titions is set to the number of processors in the virtualized target
processor.

Graph partitioning is fairly fast and produces a reasonable esti-
mate of the optimal work distribution of the stream graph for the
virtualized target system without considering low-level constraints
such as memory size, interconnect bandwidth, etc.. Each resulting
partition corresponds to one of the cores in the multicore system.
This solution approximately reflects the quality of the optimal solu-
tion if the current stream graph is used. Next, the replication algo-
rithm tries to balance the partitions by replicating the largest actor
in the partition with the maximum amount of work and moving the
new replicas to the partition with minimum work. This process is
repeated until the ratio between the maximum workload and mini-
mum workload is less than the balance factor specified as an input to
the algorithm or no more replication is possible. The while loop in
Algorithm 1 performs the partition balancing task. Lines 8-10 check
the degree of imbalance between partitions. Lines 14-16 determine
how many replicas of the actor selected from the largest partition
should be created.

An example of the prepass replication algorithm is shown in Fig-
ure 5. In this example, the virtualized target system has 8 cores.
The original graph, shown in the left part of Figure 5(a), has only
6 nodes and clearly will not efficiently use all 8 cores. The replica-
tion algorithm performns an initial graph partitioning on this stream
graph and then tries to replicate nodes and balance the partitions.
The balance factor for this example is set to 1.5. Figure 5(b) shows
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Algorithm 1 Prepass Replication Algorithm

Input: G:(V, E), #virtualProcessors, balanceFactor
1 partitions < PartitionGraph(G, #virtualProcessors);
2 while rrue do
3 SortPartitionsByWeight(partitions);

{ Find partitions with max and min weights. }
repeat
maxPartition «+— NextMaxWeightPartition(partitions);
until maxPartition has a dividable node
minPartition < MinPartitionWeight(partitions);

(RTINS

{ Check the overall balance of the partitions. }
8 if (Weight(maxPartition) < Weight( minPartition) * balanceFactor) then
Finish;
10 end if

{Find a actor in the max partition that can be replicated. }

11 repeat
12 actor < NextLargestFilter(maxPartition);
13 until (actor can be replicated)

{ Find out how many times the actor should be replicated. }

14 replicationFactor ~ <  Work(actor) / (Weight(maxPartition) -
Weight (minPartition));
15 replicationFactor «— Max(replicationFactor, 2);

16 newFilters[ | «— Split(actor, replicationFactor);

{Modify the min and max partitions. }
17 AddTo(minPartition, newFilters[1]);
18 RemoveF rom(maxPartition, actor);
19 AddTo(maxPartition, newFilters[2..replicationFactor]);
20 end while

the partitions before and after replication. At the end, the ratio be-
tween maximum weight (P1) and minimum wight (P2) is 1.3. The
modified graph is illustrated in the right part of Figure 5(a).

3.1.2  Work Partitioning

Consider a dataflow graph G = (V, E) corresponding to a stream
program. Let |V| = N be the number of actors. Let the basic
repetition vector be r, where r; specifies the number of times v; is
executed in the steady state. The rest of the section assumes r; ex-
ecutions of v; as the basic schedulable unit. Given P processors,
a software pipeline needs some assignment of the actors and data
transfer operations to the processors. The throughput of the soft-
ware pipeline is determined by the load on the maximally loaded
processor. For each actor and DMA transfer in the stream graph,
the following ILP formulation finds a valid assignment based on the
computational power of processors, bandwidth of the interconnect,
and amount of on-chip memory.

In the formulation, maximization of throughput is the main ob-
jective. We borrow the terminology from operation centric modulo
scheduling used in compiler backends, and use the term Initiation
Interval (II) to denote the inverse of the throughput. A set of 0-1
integer variables is introduced to find the processor assignment for
actors and data transfer operations. These variable are explained be-
low:

e a;; = {0, 1}: Indicates if actor i is running on processor j

® b;,i,; = {0,1} : This variable will be 1 if connected actors
(producer-consumer) 71 and 72 are both assigned to processor j

Assuming that there are n actors in the stream graph and m pro-
cessors in the target system, ¢ is between 0 and (n — 1) and j is
between 0 and (m — 1). A set of constraints are designed to find
a valid actor and DMA assignment under memory, bandwidth and
performance characteristics of the target system. The following con-
straint ensures that each actor is assigned to exactly one processor.

P
Zaij = 17 Vi
j=0
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The b;, i,; indicator variables serve two purposes. First, they are
necessary to ensure that a DMA transfer is not introduced between
two connected actors if they are on the same processor. Second, the
b variables help in buffer allocation constraints because the size of
the buffers between a pair of connected actors varies based on when
they start execution and whether they are on the same processor. The
following inequalities are used for setting the b variables.

biyinj < ai;  Vconnected actor pairs 1,52 2)
bivie; < Qigj V connected actor pairs 71,72
biyin; = @iyj +ai; —1 YV connected actor pairs 41,22

The throughput is decided based on the workload of the maxi-
mally loaded processor which is the maximum of the computation
workload and the data transfer workload across all processors. In
the schedule, it is always assumed that the DMA transfer between
a pair of connected actors is located on the processor on which the
destination actor is running. The following two inequalities denote
the relation between /I and the workload of each processor.

N
> ay xWi) < I Vj 3)
=0

15|

D (@i = biying) X Diyig) < II Vj ()

(i1 i2)
W; in Equation 3 indicates the work estimate of actor ¢ on processor
J. Dy, i, show the data transfer cost between a pair of connected ac-
tors 1 and ¢2. Equation 4 uses b;, 4, to ensure that a DMA transfer
between actors is only added if they are assigned to different proces-
SOrS.

As it will be discussed later, the amount buffering between two
connected actors depends on both where they are running and what
stage they are in. Since stage assignment is a phase of the online
adaptation layer, the ILP formulation can only have an estimate of
the actual memory consumption of the current mapping. To obtain
this estimate, it is assumed that two connected actors will be in con-
secutive stages if they are not on the same processor; otherwise, they
are in the same stage. Based on the results of the stage assignment
phase, this is a practical overestimate of the actual buffer usage. The
following set of inequalities is added to the formation for the purpose
of buffer allocation.

El
D 120y + 20,5 — 3biyip;) X Buff(in,i2)] < Mem;,

(41,92)

Vi

(%)
For each pair of connected actors 7; and ¢2 and a processor j, there
are four possible values for a;, ; and a;, ;. In each of these cases, the
amount of necessary buffering differs. Equation 5 is an estimate of
the actual memory requirement. Sections 3.2.2 and 3.2.3 talks about
the mechanics of buffer allocation at runtime in more detail.

Figure 6(a) illustrates the result of the ILP-based work partition-
ing on the graph shown in Figure 5(a). Since the cores in our system
are able to perform DMAs and run computation at the same time, the
workload of each processor would be the maximum of the computa-
tion and data transfer workloads. The II of this system is determined
by the maximally loaded processor, PO. Comparing the achieved II
of 184 with the single core performance of the graph (sum of all the
weights in the original graph) reveals that a 6.8x speedup is achieved
on 8 cores.

3.2 Online Adaptation

After static compilation is performed, the generated code can be
efficiently executed on a system that matches the virtual specifica-
tion used during the static compilation. As mentioned before, due to
the desire for porting software within members of a streaming mul-
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Algorithm 2 Algorithm for Partition Refinement

Input: processorMap(processor:actor|]), #physicalProcessors

Output: newProcessorMap

{ Assign one workload from the current processor map to each physical processor}

SortByNumberOfFiltersAscending(processorMap)

for i — 1 to #physicalProcessors do
(processor:actor[]) < RemoveNextPair(processorMap);
AddTo(newProcessorMap, (processor:actor(]));

end for

woE W -

{Prioritize the remaining actors and the chosen processor workloads}
remainingFilters < A11FiltersIn(processorMap);
SortFiltersByWeightAscending(remainingFilters);
SortByWorkAssignmentDescending(newProcessorMap);

® 9 o

{ Distribute the remaining actor between the chosen processor workloads }
weightThreshold <« TotalRemainingWeight(remainingFilters ) / #physi-
calProcessors;

10 repeat

11 actor < RemoveNextF1ilter(remainingFilters);

12 currentWeight «— Weight(actor);

13 AddTo(currentList, actor);

14 if (currentWeight > weightThreshold) then

©

15 processor < NextPhysicalProcessor(newProcessorMap);
16 AddTo(newProcessorMap, processor:currentList);

17 Clear(currentList);

18 currentWeight < 0;

19 end if

2

until remainingFilters is not empty

ticore family and also for efficiently tolerating resource availability
changes at runtime, online adaptation is crucial for software develop-
ers. In this section, we talk about various phases of the light-weight
online adaptation layer in the Flextream framework.

Online adaptation, is mainly designed to perform light-weight adap-
tation of modulo scheduling solutions at runtime for the current ac-
tive configuration. As shown in Figure 2, this part consists of three
main steps, Partition Refinement, Stage Assignment, and Buffer Allo-
cation. The first step tries to change the mapping of actors to proces-
sors based on the number of available processors to rebalance work
assignment and memory consumption on each core. The solution
specifies how actor executions are overlapped across processors (in
space). The stage assignment step determines how the executions
are overlapped in time by specifying the starting order of the actors
and DMAs. The last step of the online adaptation, buffer allocation,
tries to efficiently fit the buffers in the available storage units.

3.2.1 Partition Refinement

The virtual multicore system used in static compilation is always
a superset of the actual physical system meaning that it has more
cores, more memory, etc.. Therefore, the runtime configuration,
which Flextream has to target, will always have more limited re-
sources. Partition refinement is a general step that, at runtime, tunes
the actor-processor mapping to the real configuration of the system.
The algorithm discussed here for performing the refinement concen-
trates only on the computation workload of each core in a streaming
multicore system, but the heurisitics can be extended to account for
memory and bandwidth.

Assume that the virtualized system had n slave cores (number of
virtual cores) and the real system has m cores (number of physical
cores). m is less than n because the real system is a less powerful
member of the multicore family or some of the cores in system with
n cores have to be used to perform more critical tasks. The main
objective here is to reassign the actors to m cores with low overhead
at runtime.

As shown in Algorithm 2, the general idea is to choose m pro-
cessor assignments from the original n assignments created by the
static phase. Then, take all the actors in the (n — m) remaining
partitions and try to evenly distribute them between the chosen m
partitions. Since solving this problem based on another ILP formu-
lation or graph partitioning will have significant overhead at runtime,
a heuristic-based approach is taken.

In the algorithm, lines 1-5 choose the m work assignments with



the least number of actors from the original n. The reason the as-
signments with least number of actors are chosen first is to increase
the freedom of the second phase of the algorithm to evenly distribute
the remaining actors. Then, in lines 6-8, the remaining actors and the
m chosen assignments are prioritized. The remaining actors are all
put in one list and sorted by work estimate (weight) in ascending
order. The chosen assignments are sorted based on the total weight
of each assignment in descending order. Line 9 calculates, in the
ideal situation, what fraction of the remaining actors will go to each
of the chosen assignments. Lines 10-20 walk through the remaining
actors(sorted by ascending weight) and assigns them to the currently
chosen processors(sorted by descending weight) based on the weight
threshold calculated in line 9.
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Figure 6: Part (a) shows the solution of the work partitioning onto 8 cores
for the example shown in Figure 5(a). Part (b) illustrates the solution of the
partition refinement if number of cores changes to 5. The actors shaded in
black exist in the related processors in the original solution(a) as well as final
solution(b).

Figure 6(b) shows the refinement solution for the example in Fig-
ure 5(a) when the number of cores is reduced from eight to five.
In this figure, the five processors are the processors that are chosen
from the original work assignment shown in Figure 6(a). The high-
lighted nodes denote the nodes that were originally assigned to these
processors. The rest of the nodes are mapped to these processors as
a result of the refinement pass. The text above each processor shows
the name of the processor in the original work assignment, and the
computation workload followed by the data transfer workload. In
the new work assignment, the II is 289 determined by P3. The opti-
mal static solution for the 5-core problem will have II of 283 which
is about 3% faster than the solution shown here.

Although the algorithm in this section ignores memory require-
ments, it is sufficient to modify the heuristics used here to consider
memory requirements of the assignments. Prioritization of the re-
maining nodes after the initial selection can be done based on an
affinity function that estimates the extra necessary memory if a node
is added to a chosen processor. This type of priority function helps
to keep the memory usage of each assignment under control.

3.2.2 Stage Assignment

The processor assignment obtained by the method described in
the previous section provides only partial information for a software
pipeline. Namely, it specifies how actor executions are overlapped
across processors, but it does not specify how they are overlapped
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in time. The only goal of the processor assignment step is to load
balance, therefore it assigns actors to different processors without
taking any data precedence constraints into consideration. An ac-
tor assigned to a processor could have its producer assigned to a
different processor, and have its consumer assigned to yet another
processor. To honor data dependence constraints and still realize
the throughput obtained from processor assignment, the actor exe-
cutions corresponding to a single iteration of the entire stream graph
are grouped into stages. Within a single processor, no stages are
active at the beginning of execution. During the initial few itera-
tions, stages are activated sequentially, thus filling up the pipeline
and enabling executions of data dependent actors belonging to ear-
lier iterations concurrently with actors from later iterations. In steady
state, all stages are active on a processor, thus realizing the through-
put obtained from processor assignment. The pipeline is drained by
deactivating stages during the final few iterations.

Algorithm 3 Actor Stage Assignment Algorithm

Input: G:(V, E), processorMap(processor:actor|])
Output: actorStageMap(actor:int)
1 for all (actor f1 in G in topological order) do
2 maxStage «— 0; flag «— false;
3 for all actor f2 in parents f/ do
4 if (Stage(actorStageMap, f2) > maxStage) then
5 maxStage «—— Stage(actorStageMap, f2);
6 if (Processor(processorMap, f1) != Processor(processorMap, f2))

then
7 flag — true;
8 end if
9 end if
10 end for
11 if (flag) then
12 stage «<— maxStage + 2;
13 else
14 stage «<— maxStage;
15 end if
16 AddTol(actorStageMap, f1:stage)
17 end for

The main goal of the stage assignment step is to overlap all data
communication (DMAs) between actors. To achieve this, the stage
assignment step considers the DMAs as schedulable units. To honor
data dependences and ensure DMAs can be overlapped with actor
executions, certain properties are enforced on the stage numbers of
actors. Consider a stream graph G = (V, E). The stage to which
an actor ¢ is assigned is denoted by S;. In addition, the processor
to which 4 is assigned is denoted by p;. The following rules enforce
data dependence and ensure DMA overlap.

e (i1,i2) € E = Si, > S;,, i.e., the stage number of a con-
suming actor should come after the producing actor. This is to
preserve data dependence.

o If (il, ig) € E and p;; # pi,, then a DMA operation has to
be performed to transfer the data from p;, to p;,. The DMA
operation is given a separate stage number Spasa. The in-
equality S;;, < Spma < Si, is enforced between the stages
of the different actors and the DMA operation. The DMA op-
eration is separated from the producer by at least one stage,
and similarly, the consumer is separated from the DMA oper-
ation by one stage. This ensures decoupling, and allows the
overlap of the producer and the DMA, as well as the DMA
and the consumer.

As shown in Algorithm 3, a topological traversal of the stream
graph is necessary to assign stages to actors. For each actor, the
maximum stage of its parents is found and a flag is set if the parent
with maximum stage is not on the same processor as the actor. This
part of the algorithm is done in lines 3-10. For each actor, if the par-
ent with maximum stage number is on a different processor, there
will be a two stage gap between the parent and the child. Otherwise



Figure 7: The example shown in 5(a) after stage assignment is illustrated in part (a). The number in the gray boxes show the stage number of the actors marked
by the dashed lines. Part (b) demonstrates the execution of the first 6 stages of the schedule found by Flextream.

BG1-Spill

Figure 8: Different approaches to buffer allocation for a producer-consumer pair is demonstrated in this figure. In (a), the original arrangement of buffers before
performing buffer allocation is shown. In parts (b) and (c), two approaches that Flextream could take and their effects on the overall schedule and memory

consumption is illustrated.

the child actor can be placed in the same stage as the parent with
maximum stage (lines 11-16). The result of the stage assignment is
illustrated in Figure 7(a). There are total of 16 stages in this sched-
ule. One interesting point in this figure is that actors DO and D1 are
not in the same stage. This is because D1 is located on the same
processor as S1. This figure does not show the stages for DMA op-
erations for the sake of figure readability. Figure 7(b) shows how the
schedule runs based on the work assignment and stage assignment.
In this figure, DMAs are shown as shaded boxes. This figure demon-
strates how stage assignment specifies the ordering between actors
in time and work partitioning (and partition refinement) determines
actor-to-processor (space) assignment.

3.2.3  Buffer Allocation

Buffer allocation tries to efficiently fit the storage requirements
of the schedule, found by the previous phases, into the available
memory units. In the software pipelined schedule, connected ac-
tors communicate through a set of buffers. The number of necessary
buffers for a producer-consumer pair varies depending on the time
they start (stage mapping). In this section, the set of buffers between
a producer-consumer pair is called a buffer group. Based on its stage
number, a producer actor could be executed multiple times before
one of its consumers is ever executed. The number of buffers in a
buffer group needed to store the output of a producer (actor or DMA
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operation) assigned to stage S, feeding a consumer(actor to DMA
operation) on stage S. can be calculated as S. — S, + 1. For exam-
ple, in Figure 7(b), the number of buffers necessary between actor
S0 and DMA operation S0-C'1 is 2 because they are in stages 4
and 5, respectively. All the phases before buffer allocation assume
that the buffers between a producer actor and a DMA operation are
stored in the local memory of the processor on which the producer
is running. Symmetrically, the buffers between a DMA operation
and a consuming actor are stored on the local store of the consuming
processor.

In the work partitioning, partition refinement and stage assign-
ment, it is assumed that all the buffer groups will fit in the local
stores of the cores on which the corresponding actors are running.
Therefore all the DMAs are from local store to local store. In some
situations, based on the stage map and amount of buffering that is
needed between a pair of actors, the local store may not be large
enough to fit all the buffers. In those cases, in order to have a sched-
ule that can actually run on the target system, some of the buffer
groups have to be spilled to other local stores that have empty space
or main memory. Spilling buffer groups will result in changes in the
schedule. Basically, after moving a buffer group to another storage
unit, new DMASs have to be added to the schedule. These DMAs are
needed to ship the data between the local store of the processors on



Algorithm 4 Buffer Allocation Algorithm

Input: procMap(processor:actor[]), stageMap(actor:int)
{Compute memory usage per local store based on work and stage assignment }
memoryUsage[processor:long] < Update(procMap, stageMap);

{Find the processors that their local store needs spilling }
(victimProcs[ ], nonVictimProcs[]) <— FindVictims(memoryUsage);
SortByWorkLoadDescending(victimProcs);

w o

{Find victim buffers }

4 for all Processor p in victimProcs do

5 savings = 0;

6 BufferGroup buffs[] = Buf ferGroups(p);
7 SortBySpillSizeDescending(buffs);
8 for all BufferGroup bg in buffs do

9 savings < savings + Spi11Size(bg);
10 if (memoryUsage[p] - savings < LocalStoreSize(p)) then
1 break;

12 end if

13 add(victimBuffers, bg);

14 end for

15 end for

{Find target location for the victim buffers and fix the schedule}
16 for all BufferGroup bg in victimBuffers do
17 target = findTarget(bg, memoryUsage, nonVictimProcs);
18 MoveBufferTo(bg, target);
19 newDMA([] = CreatNewDMA(bg);
20 UpdateStageMap(newDMA);
21 Update(memoryUsage);
22 end for

which the related actor is running and the new memory unit. The
addition of the DMAs can increase the workload of the processors
resulting in an increase of II. Since the cost of a DMA to and from
main memory is significantly higher than the cost of a transfer be-
tween local stores, it is desirable to first exploit the free space in the
local stores before utilizing the main memory.

The buffer allocation algorithm is shown in Algorithm 4. First,
the memory usage of the current schedule is calculated based on the
processor and stage assignments (line 1). Then, the list of victim
(overcommitted) processors is formed. This list contains all proces-
sors that exceed the size of their local stores (line 2) and is sorted in
descending order by the amount of work that is assigned to each pro-
cessor (line 3). The victim processors are given the chance to make
use of other local stores with priority given to processors with more
work. It is more beneficial to spill the buffers into the processors
with more work first, because these spilled buffers are more likely to
fit in other processors’ local stores, resulting in less DMA overhead.
Then, in lines 4 to 15, the list of buffer groups that do not fit in the
corresponding local stores is extracted. This part tries to spill as few
buffer groups as possible (by spilling the largest ones first) to reduce
the overhead of DMA transfers. At the end(lines 16-22), the algo-
rithm goes through the selected buffer groups and tries to move them
to other local stores first and then main memory. After finding the
target (local store, main memory), for each spilled buffer group, new
DMAs are added to the schedule and the current stage assignment is
updated.

The function, UpdateStageMap, in line 20 of Algorithm 4 can
take two different approaches for updating the stage assignment and
adding the new DMAs. These approaches are illustrated in Figure 8.
The first part of the figure shows the stage and processor assignment
for a pair of actors. Actors A and B are mapped P1 and P2 and start
at stages 0 and 5. A DMA located on P2 in stage 3 transfers data
between A and B. The buffer groups and their placement before
running the buffer allocation are shown in Figure 8(a). Assume that
out of the 4 buffers in buffer group 1 (BG1), 2 will not fit in P1’s
local store. P3 is a candidate for spilling in this buffer group. In
Figure 8(b), the first possible solution to buffer allocation is shown.
In this case, the buffer group is moved to P3’s local store and a new
DMA is added to P1 in stage 0. The original DMA between P1 and
P2 is modified to read from P3’s local store. The number of buffers
on P1’s local store is reduced to 1. Since the new DMA (between
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P1and P3)isin stage 0 and there is only 1 buffer between this DMA
and A, the DMA has to run sequentially after A is done, increasing
the workload of P1. The second approach, shown in Figure 8(c),
tries to place the new DMA (between P1 and P3) 2 stage after A’s
stage (1 in this example). In this case, the number of buffers needed
in P3 decreases to 3, but 1 more buffer from buffer group 1 remains
in P1’s local store. The benefit of this approach is that the new DMA
can be executed in parallel with A, eliminating the possibility of
increasing the workload of P1. Each of these approaches has its own
benefit(memory usage vs. performance) and the buffer allocation
algorithm chooses between them based on the size of the local stores
and workload of each victim processor.

4. EXPERIMENTS

We evaluated Flextream using a heterogeneous multicore simula-
tor that we have built. We also leveraged the Streamlt compiler as
a starting point for implementing our heuristics and used Metis [11]
for graph partitioning. For the evaluation and results, we simulated a
multicore system with 32 slave cores and one master core. The mas-
ter core is similar to a PowerPC processor running at 2GHZ with a
32KB L1 and a IMB L2 cache. Each slave core includes a local store
for instructions and data, and a memory flow control (MFC) unit that
performs DMA operations to and from the local stores independent
of the slave cores.

Performance Comparison: We first compare the performance
achieved using Flextream to that achieved using online whole-program
graph partitioning. The graph partitioner uses the work estimate of
the actors as the node weights, and the communication costs as the
edge weights. We perform prepass replication for both approaches.
In this experiment, we measure the performance degradation caused
by either strategy, compared to the optimal schedule. We use bench-
marks drawn from the Streamlt benchmark suite. Each benchmark
isrun 31 times, and in each run 1 < ¢ < 32, the total number of pro-
cessors starts at 32 cores, and is subsequently reduced to a smaller
number of cores equal to 7. The average slowdown per benchmark
is shown in Figure 9. Flextream is 9% worse than then the perfor-
mance achieved using an optimal schedule, but 8% better than apply-
ing graph partitioning at runtime. The main reason for Flextream’s
performance edge is that Flextream leverages the optimal scheduling
solution found by the static compilation phase.

Performance Comparison
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Figure 9: This graph shows performance degradation when online adaptation
is carried out using two different strategies.

Figure 10 compares the average time that Flextream’s partition re-
finement step needs to generate a new processor mapping to the time
taken by the graph partitioning approach. On average, Flextream’s
approach is 50%(3ms) faster than the graph partitioning approach.
The results suggest that Flextream is a superior strategy to reparti-
tioning, considering that the scheduling solutions are derived faster
and yield better performance. It is also worthy to note that the run-
time overheads are likely to be very high in the absence of good
starting solutions. The combination of static compilation (ILP and



prepass fission) and dynamic adaptation is an attractive combination
that combines the benefits of static and dynamic paradigms.
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Figure 10: This graph illustrates the amount of time Flextream’s partition
refinement takes and compares it with the graph partitioning approach.

Overhead: We measured the overhead associated with each Flex-
tream phase. Figure 11 illustrates the relative and absolute values of
the times taken by each phase. We exclude from this graph the time
taken to perform work partitioning since it can take several minutes
for the work partitioning to find a valid ILP solution. Each of the
bars in the figure include a label that represents the absolute time (in
milliseconds) taken by that phase. The prepass replication requires
1283ms and is significantly longer than the time taken by the other
3 online phases (notice that the Y-axis starts at 90%). Among the
online phases, stage assignment is the longest, followed by buffer
allocation and work refinement. Most of the overhead for stage as-
signment is due to the topological traversal of the graph. The results
indicate that the time spent in prepass replication is proportional to
the size of the application (graph). Overall, this experiment supports
the hypothesis that performing online adaptation using Flextream is
an efficient endeavor.
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Figure 11: Flextream overhead categorized by phases. Each bar has 4 parts,
showing the relative (Y-axis) and absolute (labels within the bars) times spent
in each of the static and online phases. Note that the Y-axis starts at 90%.

Buffer Allocation: Buffer allocation is the last Flextream phase.
This step can lead to new DMA requests and can increase the pro-
cessor workloads. Buffer allocation attempts to maximize the use of
the local store in order to avoid the long latencies associated with
accessing main memory. The graph in Figure 12 shows how this
optimization impacts overall performance. For this experiment the
number of processors is changed at runtime from 32 cores to 8. We
gradually decrease the size of the local store, starting at Max Mem
which is large enough to ensure that no spilling occurs. This exper-
iment shows the effectiveness of the buffer allocation algorithm in
using local stores. As expected, the performance degrades when the
size of the local store is reduced. The buffer allocator uses the local
stores until it exhausts their capacity, at which point it has only one
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recourse, and that is to use main memory. For some benchmarks, re-
ducing the local store capacity has negligible impact (e.g., mpeg2)
because new DMA requests are added to the processors that have
less work according to the original schedule (before buffer alloca-
tion). In other words, the overhead of the new DMA operations do
not increase the size of the maximum workload.

Effect of Buffer Allocation on Performance
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Figure 12: Effect of buffer allocation on benchmark throughput. For each
benchmark, the amount of memory is increased from a minimum to a max-
imum capacity. Throughput is recorded for 6 uniformly distributed memory
sizes per benchmark.

A Full Runtime Scenario: We also carried out an experiment to
demonstrate how Flextream might perform in a real scenario where
resource availability changes multiple times at runtime. Each time
the the number of available cores changes, a new schedule is gener-
ated using the online adaptation mechanism. The extant schedule is
drained and the new schedule is communicated to the slave proces-
sors using the multicore stream layer (see section 2.2). The adapta-
tion overhead therefore is the sum of the time taken by each of these
steps. Among all of the benchmarks, the maximum overhead for
sending commands is 11 micro seconds. This assumes the overhead
for sending each command is 20 cycles.

Drain(ms) | Adaptation(ms) | 1K sec-Flextream | 1K sec-Static
bitonic sort 6.14 89.42 350M 356M
dct 0.79 42.80 380 M 452 M
des 32.39 113.80 148 M 150 M
fft 2.37 142.95 222 M 230 M
filter bank 0.44 142.95 448 M 490 M
fm 2.16 65.71 133 M 143 M
matrix mult. 3.07 37.19 62 M 71M
mpeg2 4619 43 156 K 177K
serpent 81.11 79.09 52M 54 M
tde 780 66.08 1.2M 1.3 M

Table 1: Performance comparison between Flextream and optimal for a run-
time scenario in which number of cores varies in this order: 32, 16, 10, 6.
Each configuration runs for 250 seconds.

Table 1 compares the performance of our approach with the the-
oretical optimal in a scenario where the number of available cores
at runtime changes from 32 to 16, then to 10, and finally to 6. We
assume each configuration runs for 250 seconds, for a total process-
ing time of 1000 seconds. The theoretical optimal solution, for each
runtime configuration, uses a schedule found by the static phase.
The first column shows the total time needed to drain the sched-
ules. The overhead of the online adaptation is shown in the second
column. The last two columns show how many iterations of each
stream graph can be executed using Flextream versus the optimal
approaches. The largest difference between the last two columns
occurs in dct which loses 16% of its throughput when using Flex-
tream. The best performing benchmarks are bitonic sort and
serpent, losing only 3% of their throughput compared to opti-
mal. Overall, these results imply that solutions found by Flextream,



in real execution scenarios, can perform close to theoretical optimal
solutions.

S. RELATED WORK

There is a large body of literature that deals with exploiting par-
allelism in streaming codes for better performance. The most recent
and relevant works include compilation of new streaming languages
such as StreamlIt, Brook, StreamC/KernelC, and Cg to multicores or
data-parallel architectures. For example, Gordon et al. [S] and [6]
perform stream graph refinements to statically determine the best
mapping of a Streamlt program to a multicore like the one we con-
sider in this paper. Kudlur and Mahlke apply modulo scheduling
to an unrefined stream graph to maximize throughput [12]. Liao et
al. apply classic affine partitioning techniques to exploit properties
of stream operators [17]. There is also a rich history of scheduling
and resource allocation techniques developed in Ptolemy that make
fundamental contributions to stream-scheduling (e.g., [15, 8]). Flex-
tream is unique relative to these past contributions in its ability to dy-
namically adapt a static schedule and resource allocation to changes
in available resource at runtime. Viewed in this way, Flextream is
complimentary to some static scheduling techniques, and can be ap-
plied more generally as long as we can extract a graph-representation
of the streaming computation.

In contrast to static compilation techniques, there are also many
existing ideas related to compilation for multicores. In [7], the au-
thors dynamically map an abstract representation of a stream pro-
gram [13] to threads that can execute in parallel on a general purpose
multiprocessor. In CellSs [1], computation is expressed as functions
that may be composed to form a dataflow graph. A runtime sched-
uler treats this graph in the same way a superscalar processor treats
operations, and schedules these functions onto the Cell cores as soon
as their inputs are ready. In [2], the authors describe an application-
specific parallelization strategy that they applied manually. They
were able to target for various configurations of the Cell architec-
ture, which varied the number of cores in each configuration. Our
work is distinctly different from these works in that we use a static
compile-time schedule to automatically perform dynamic optimiza-
tions that lead to new and efficient resource allocations.

Adaptive compilation to a virtualized system is not an entirely
new idea. Recent examples include Veal [4] and Liquid SIMD [3].
The authors in these works take similar approaches to the one in
this work but in very different domains than the one we address in
this work. In [4], adaptive loop modulo scheduling is performed for
a virtualized loop accelerator system. The authors in [3] propose
hybrid compilation techniques for mapping a vectorizable program
to SIMD engines that have different vector lengths.

6. CONCLUSION

In this work, we focus on the increasingly important area of stream-
ing computing and introduce Flextream as a flexible compilation
framework that can dynamically adapt applications to the changing
characteristics of the underlying architecture. This is an important
contribution as software developers grapple with the details of paral-
lelism in a rapidly changing architecture landscape. The main inno-
vation in Flextream is an adaptive stream graph modulo scheduling
algorithm that combines the benefits of static scheduling with the
advantages of dynamic adaptation. Our results indicate that Flex-
tream’s approach can achieve high-performance resource allocations
that are within an average of 9% compared the optimal solutions with
low overhead.
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